Bayesian and maximum likelihood estimation of genetic maps
نویسندگان
چکیده
منابع مشابه
Bayesian and maximum likelihood estimation of genetic maps.
There has recently been increased interest in the use of Markov Chain Monte Carlo (MCMC)-based Bayesian methods for estimating genetic maps. The advantage of these methods is that they can deal accurately with missing data and genotyping errors. Here we present an extension of the previous methods that makes the Bayesian method applicable to large data sets. We present an extensive simulation s...
متن کاملBayesian and Iterative Maximum Likelihood Estimation of the Coefficients in Logistic Regression Analysis with Linked Data
This paper considers logistic regression analysis with linked data. It is shown that, in logistic regression analysis with linked data, a finite mixture of Bernoulli distributions can be used for modeling the response variables. We proposed an iterative maximum likelihood estimator for the regression coefficients that takes the matching probabilities into account. Next, the Bayesian counterpart...
متن کاملConstructing and Joining Maximum Likelihood Genetic Maps
We present CART HAGENE a new piece of software for genetic mapping. Compared to existing genetic mapping softwares, CART HAGENE has both strengths and weaknesses. The most important weakness is certainly its actual limitation to backcross-like pedigree. However, when CART HAGENE applies, it is able to order markers and produce maximum multipoint likelihood marker maps with a large number of mar...
متن کاملHyperbolic Cosine Log-Logistic Distribution and Estimation of Its Parameters by Using Maximum Likelihood Bayesian and Bootstrap Methods
In this paper, a new probability distribution, based on the family of hyperbolic cosine distributions is proposed and its various statistical and reliability characteristics are investigated. The new category of HCF distributions is obtained by combining a baseline F distribution with the hyperbolic cosine function. Based on the base log-logistics distribution, we introduce a new di...
متن کاملBayesian approach to maximum likelihood estimation
Suppose that we start with a “prior” probability distribution g(θ) on parameters, which represents our knowledge (such as the frequencies of the 4 different nucleotides in the DNA of a given species) before running an experiment. Next, we run an experiment (e.g., sequencing a particular segment of DNA), and observe an outcome x. Bayes’s rule tells us that P (θ|x) = P (x|θ)g(θ) P (x) . In the ra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Genetical Research
سال: 2005
ISSN: 0016-6723,1469-5073
DOI: 10.1017/s0016672305007494